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Abstract

Cobalamins (B};) play various important roles in vivo. Most Bj,-dependent enzymes are divided into three main subfamilies:
adenosylcobalamin-dependent isomerases, methylcobalamin-dependent methyltransferases, and dehalogenases. Mimicking these
B, enzyme functions under non-enzymatic conditions offers good understanding of their elaborate reaction mechanisms. Further-
more, bio-inspiration offers a new approach to catalytic design for green and eco-friendly molecular transformations. As part of a
study based on vitamin B, derivatives including heptamethyl cobyrinate perchlorate, we describe biomimetic and bioinspired cata-
lytic reactions with B, enzyme functions. The reactions are classified according to the corresponding three B, enzyme subfami-
lies, with a focus on our recent development on electrochemical and photochemical catalytic systems. Other important reactions are
also described, with a focus on radical-involved reactions in terms of organic synthesis.

Review

1. Introduction

1-1. Redox and coordination chemistry of B4»

Cobalamins (B) are naturally occurring cobalt complexes with ~ lower axial ligand (Figure la) [6-8]. The cobalamin with an
unique structures that play various important roles in vivo [1-5].  upper ligand is termed vitamin B, (a cyanide group), methyl-
In B,, the cobalt center is coordinated by four equatorial cobalamin (a methyl group), and adenosylcobalamin (an

pyrroles of the corrin ring and 2,3-dimethylbenzimidazole as a  adenosyl group), respectively. The oxidation state of cobalt ions

2553


https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:yhisatcm@mail.cstm.kyushu-u.ac.jp
https://doi.org/10.3762%2Fbjoc.14.232

Beilstein J. Org. Chem. 2018, 14, 2553-2567.

CN vitamin B4, (cyanocobalamin)

L= CHz methylcobalamin
Ado  coenzyme B4, (adenosylcobalamin)
HO OH
Ado = H,C" N
O
g <\JQ
NH,
’ )
photolysis ﬂ
+ Re
(electrophlle)
i )
thermolysis
(organlc radical)
electrolysis v

(nucleophile)

Figure 1: (a) Structure and (b) reactivity of B1s.

in By, ranges from +1 to +3. Each oxidation state of cobal-
amins exhibits quite different ligand-accepting abilities and re-
activities. Cob(Ill)alamins strongly favor 6-coordination with
2,3-dimethylbenzimidazole in homogeneous solutions at
physiological pH (denoted as base-on form). In particular,
cob(Il)alamins with upper alkyl ligands are quite interesting
because of their structural relevance to methylcobalamin and
adenosylcobalamin (coenzyme Bj,) that serve as organometal-
lic cofactors in Bjp-dependent enzymes. The photolysis
(thermolysis) of alkylcob(Ill)alamins leads to the formation of
the corresponding alkyl radical and cob(II)alamin with
homolytic Co(III)-C bond cleavage (Figure 1b). This high
lability is attributed to a relatively weak Co(III)-C bond, as
exemplified by its bond dissociation energies of 30 kcal/mol in
coenzyme B, and 37 kcal/mol in methylcobalamin in base-on
forms [9]. Cob(Il)alamin favors 5-coordination in the homoge-
neous solutions at physiological pH [10]. It is paramagnetic and
has an unpaired electron in the axial dz? orbital. It acts as a high
efficient “radical trap” and reacts with alkyl radicals to yield
alkylcob(IlT)alamin (Figure 1b). Four-coordinated cob(I)alamin
has a paired electron in the axial dz2 orbital, resulting in high
nucleophilicity with a Pearson constant of 14 [11]. It is slightly
basic, with a pK, lower than 1 for the Co—H complex [12]. The

“supernucleophilic” cob(I)alamin is found in many enzymes
such as methionine synthetases, adenosyltransferases, and
reductive dehalogenases. In addition, the reactivity of
cob(I)alamin has been investigated using various electrophiles
such as alkyl halides [13], vinyl halides [14-16], aryl halides
[17,18] and epoxides [19,20] in homogeneous solutions
(Figure 1b).

1-2. Design of biomimetic and bioinspired

B2 catalytic systems

Schematic representations of B, enzymes and enzyme-involv-
ing systems are shown in Figure 2a. The remarkable in vivo and
in vitro characters of B}, are summarized as follows:

1. By, shows good accessibility to Co(I) species with a
redox potential (the Co(II)/Co(I) couple in the base-off
form) of =500 mV vs the standard hydrogen electrode
[21], because of the monoanionic corrin ligand.

2. Bjj is reduced to Co(I) species in the active center by
reductases in sustainable processes.

3. The partially n-conjugated system of the corrin ring is
less easy to be adducted by free radicals than those of
porphyrins.

2554



Beilstein J. Org. Chem. 2018, 14, 2553-2567.

(@)

Reductase

B;, Enzyme

 Bu

Apoenzyme

Substrate

Products

(b) Artificial Reductants
Cathode

Semiconductor
Photocatalyst

r
CO,CH,

Molecular
Photosensitizer 1

Vitamin B,, Derivative

CO,CH;

Heptamethyl Cobyrinate Perchlorate

Alternatives to Apoenzyme
~

Bilayer
Vesicle

~

Figure 2: (a) Schematic representation of B4, enzyme-involving systems. (b) Construction of biomimetic and bioinspired catalytic systems by combin-

ing functional equivalents of B1, enzyme-involving systems as components.

4. By; is bound to a number of proteins and acts as a
module.

5. Different chemical functions of By, are exploited by
bound apoenzymes.

6. B, is recycled or reactivated in vivo as observed in
methyonine synthetases.

Understanding the mechanisms of B, enzyme reactions and the
role of By, is very important from the viewpoint of bioinor-
ganic and organometallic chemistry, organic syntheses, and
catalysts. Despite extensive research, reproducing B, enzyme
reactions in vitro had been difficult in homogenous solutions.

Construction of sustainable catalytic systems inspired by
B, enzymes is another important issue that must be addressed
for green chemistry. Due to the above-mentioned unique redox
and coordination chemistry, vitamin B, and its derivatives [22]
are used as effective homogenous catalysts in various organic
reactions [23-25], although an excess of chemical reductants are
often used to activate By, to the Co(I) species. Green catalytic
systems capable of activating B, have not been reported in the
literature, with the exception of electrocatalytic systems [26,27].

To achieve functional simulations of B, enzymes under non-
enzymatic conditions, our strategy is to fabricate the artificial
enzymes by combining a functional equivalent of By, and that
of an apoenzyme (Figure 2b). We have been exploring the
utility of hydrophobic B, model complexes, such as
heptamethyl cobyrinate perchlorate 1, that possess ester groups

in place of the peripheral seven-amide moieties [28,29]. 1 was
developed by Eschenmoser et al. as a model complex for the
total synthesis of vitamin By, [30]. Indeed, in the crystal struc-
ture, 1 maintained the same corrin framework as natural By,
[31]. We combined the hydrophobic By, derivatives with bilay-
er vesicles [32,33], a protein [34], organic polymers [35-40],
and metal organic frameworks (MOFs) [41]. Furthermore, to
construct green catalytic systems inspired by B, enzymes, we
combined the hydrophobic B, derivatives with a functional
equivalent of reductases. In the resultant catalytic systems, the
Co(I) species was generated through electron transfers from the
cathodes [42,43], semiconductors [44], or molecular photosen-
sitizers [45] to the By,. In this review, we summarize the
biomimetic and bioinspired catalytic reactions with B, en-
zyme functions, with a focus on our recent work on electro-

chemical and photochemical systems.

2. 1,2-Migrations of functional groups

Enzymes using radical species are models of good catalysts for
chemists because they efficiently mediate difficult organic reac-
tions under mild conditions [46-51]. In some catalysis mediated
by By, enzymes, the high reactivity of the adenosyl radical is
exploited for isomerization. The microenvironments provided
by the apoenzymes activate and cleave the Co(II)-C bond of
the By, coenzyme B, in a homolytic fashion to produce an
adenosyl radical [52,53]. In methylmalonyl-CoA mutase
(MMCM), the conversion from R-methylmalonyl-CoA to
succinyl-CoA (Scheme 1a) starts with hydrogen abstraction by
the adenosyl radical.
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(a)
COOH methylmalonyl- COOH
| CoA mutase |
H3C—C|)—H Hz?_CHQ
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vs SCE number/h
1 -1.0V, hv 10% trace 1.6
1 2.0V 15% 80% 20

Scheme 1: (a) Carbon-skeleton rearrangement mediated by a coenzyme B1»-depenedent enzyme. (b) Electrochemical carbon-skeleton rearrange-

ment mediated by 1.

2-1. Electrochemical catalytic reactions

We deeply investigated the electrochemical catalytic reactions
mediated by 1 and related complexes and succeeded in the func-
tional simulations of MMCM-type 1,2-migration reactions [42].
For example, when 2,2-bis(ethoxycarbonyl)-1-bromopropane
was selected as a model substrate, the 1,2-migration of
carboylic ester (80%) and some simple reduction product (20%)
were obtained under controlled-potential electrolysis at —2.0 V
vs SCE in the presence of catalyst 1 in DMF (Scheme 1b) [54].
There were different ratios for the simple reduced product and
the ester-migrated product, depending on the reaction condi-
tions. Mechanistic investigations revealed that the formation of
the two-electron-reduced species of Co(III)-monoalkylated
complex of 1 was vital for carbon-skeleton rearrangement reac-

tions. It was also discovered that the 1,2-migration of the
carboxylic ester group proceeded via an anionic intermediate.
To clarify the migratory aptitude of the functional groups,
several kinds of substrates with an electron-withdrawing group
were utilized. The yields of the migrated products increased in
the order of CN < CO,R < COR [54]. For alkyl halides with
two carboxylic ester groups that differ in their bulkiness, the
yields of the migrated products are higher for the smaller ester
group [55].

Furthermore, we succeeded in tuning selectivity in the 1,2-
migration of a functional group mediated by 1 by controlling
the electrolysis potential (Scheme 2) [56]. The electrolysis of
diethyl 2-bromomethyl-2-phenylmalonate at —=2.0 V vs

CO,C,H;5 CO,C,H;5 Ph CO,CoH5 CO,C,H5
electrolysis | ] | H
H,C—C—FPh H;C—C—Ph + HZC—(|)H + H,C—C—Ph

Br CO,C,H5 CO,C,H;5 CO,C,H;5 CO,C,H5
reduced Ph-migrated ester-migrated
product product product

vs Ag/AgCl conversion product ratio

1 -1.0V, hv 10% 74% 24% 2%

1 -1.5V 15% 81% 17% 2%

1 2.0V 85% 32% 5% 63%

2b -09V 3% 98% 2% trace

2b -1.2V 10% 36% 1% 62%

Scheme 2: Electrochemical carbon-skeleton arrangements mediated by B42 model complexes.
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Ag/AgCl yielded carboxylic ester migrated product as the major
-1.0V
vs Ag/AgCl through light irradiation, as well as at =1.5 V vs

product. Conversely, the electrolysis of the substrate at

Ag/AgCl in the dark, yielded the simple reduced product and
the phenyl migrated product. The cathodic reactivity of the
monoalkylated complex of 1 was found to be critical to the
selectivity of the migrating group.

Interestingly, the electrochemical carbon-skeleton rearrange-
ment reactions were successfully mediated by simple B, model
complexes 2 (Figure 3). The imine/oxime-type square planar
ligands of cobalt complexes 2 are superior to porphyrin ligands
in terms of the model for the corrin framework of B1,; both the
imine/oxime-type and corrin ligands are monoanionic [57-60].
The imine/oxime-type cobalt complex 2 can be isolated in both
the monoalkylated and dialkylated forms [59,60]. This is in
contrast to 1; 1 cannot be dialkylated because of steric
hindrances [42]. The Co(Ill)-monoalkylated complex can be
electrochemically reduced to form Co(I) species and a Co(I1I)-
dialkylated complex through disproportionation. The resulting
Co(IIl)-dialkylated complex shows different electrochemical re-
activity. It can be electrochemically oxidized to form the
Co(IIl)-monoalkylated complex. These electrochemical reactiv-
ities are exemplified by those of the Co(III)-CHj; and
Co(III)~(CH3); complexes of compound 2a in Figure 3. In the
electrolysis, the reduction of the Co(Ill)-monoalkylated com-
plex and the oxidation of the Co(III)-dialkylated complex
proceeded at the cathode and anode, respectively [61]. These
processes were coupled to achieve the 1,2-migration of
functional groups. Further investigations with diethyl
2-bromomethyl-2-phenylmalonate as a substrate confirmed that

heptamethyl cobyrinate 1

CH3
monomethylated dimethylated

reduction active no formation
-1.32 vs SCE
in DMF/n-Bu4NBF4

imine/oxime-type Co complex 2

Beilstein J. Org. Chem. 2018, 14, 2553-2567.

the carboxylic ester-migrated product was formed via not a
radical, but a cationic intermediate that was generated by the
fragmentation to the monoalkylated complex at the anode
(Scheme 2).

2-2. Artificial enzyme-mediated reactions

A vesicle-type By, artificial enzyme was constructed by com-
bining bilayer vesicles composed of synthetic lipids and alky-
lated complexes of heptapropyl cobyrinate (Scheme 3) [32,33].
The alkylated B;; model complexes were introduced into the
vesicle in aqueous solutions through non-covalent hydrophobic
interactions and irradiated with a 500 W tungsten lamp to result
in the homolytic cleavage of the Co(IlI)-C bonds. The carbon-
skeleton rearrangements were achieved in the vesicle due to
cage effects in the apoenzyme model. Conversely, such reac-
tions hardly proceeded in homogenous solutions. The yields of
the migration products increased in order of CN ~ CO,C,Hjs <
COCHj3. A cyclophane-type By, artificial enzyme also medi-
ated similar carbon-skeleton rearrangements [32].

We developed another artificial enzyme composed of human
serum albumin (HSA) and heptapropyl cobyrinate [34]. It is
known that HSA acts as a carrier for in vivo hydrophobic mole-
cules. Hydrophobic B, model complexes were successfully in-
corporated into the HSA. The incorporated amounts increased
as the hydrophobicity of the Bj; model complexes increased.
The hydrophobicity can be varied through chemical modifica-
tion of the peripheral ester groups placed at the peripheral sites
of the corrin skeleton. The HSA microenvironments increased
the yield of the acetyl-migrated product compared with the
homogenous conditions of the methanol or benzene solutions

+ CH d B ,
o [T I I
/ | \
i éom / @ R'
CHj H
monomethylated dimethylated 2a: R = C3H;, R'= CyH;5

reduction active
-1.50 vs Ag/AgCl

in DMF/n-Bu4NCIOg4

for 2a

Figure 3: Key electrochemical reactivity of 1 and 2 in methylated forms.

oxidation active
0.73 vs Ag/AgCl

2b: R=R'=CHjs
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Scheme 3: Carbon-skeleton arrangements mediated by B4,-vesicle artificial enzymes.

(Scheme 4). This increase resulted from the effects of suppres-
sion of molecular motion and the desolvation of the Bj; model
complex in HSA.

MOFs are a class of crystalline materials constructed from
metal connecting nodes and molecular building blocks [62-64].
To explore the utilities of the microenvironments provided by
MOF:s for By, catalytic reactions, a new MOF {Zn4Ru,(bpdc)y:
4NH,(CHj3),-9DMF},, (Hobpde = 4,4’-biphenyldicarboxylic
acid) was prepared by the reaction of Hobpdc, Ru(bpy),Cl,,
and a zinc source under solvothermal conditions (bpy = 2,2'-
bipyridine, Scheme 5) [41]. The molecular photosensitizer
[Ru(bpy);]*" was incorporated into the MOF through adsorp-
tion to form Ru@MOF, accompanied by a color change.
Furthermore, 1 was effectively immobilized on Ru@MOF, as
was confirmed through ESR measurements. The resultant

CO,C,H5
hv

CO,CoH;5

heterogeneous hybrid catalyst Bj,-Ru@MOF successfully
mediated the photochemical carbon-skeleton arrangement.
Previous studies had demonstrated that the hemolytic cleavage
of the Co(III)-C bond of the alkylated complex of 1 generated
Co(II) species and an alkyl radical intermediate A [54]. The
prolonged lifetime of the radical intermediate A could be provi-
ded by the channel of MOF, enabling conversion to the acetyl-
migrated radical B. The radicals A and B may abstract hydro-
gen radicals to form the reduced product and the acetyl-
migrated product, respectively. It was noticeable that the cata-
lytic cycle for 1,2-migration was constructed for the Bj;-
Ru@MOF system. This stands in contrast to the stoichiometric
reactions in the previous B, artificial enzymes. Furthermore,
the catalytic process of the Bi;-Ru@MOF system is visible-
light-driven through the use of [Ru(bpy)3]*" as an alternative to
reductases. This serves as a simplified analogy for the By, en-

CO,C,Hs5 CO,CyH5

H
HoC—C—CHy ———————  H;C—C—CH; + H,C—C—CH; + H,C—C—CHs

‘COCH3 COCH3 COCHg3 COCHg;
@ reduced acetyl-migrated ester-migrated
product product product
methanol 90% 10% trace
benzene 87% 13% trace
HSA 32% 68% trace

Scheme 4: Carbon-skeleton arrangements mediated by B12-HSA artificial enzymes.
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(a) COCH; COCH; C|OCH3
hv H
H,C—C—CH; —— » H3C—C—CH3z+ H,C—C—CHj3
I
Br C02C2H5 002C2H5 C0202H5
Reduced Acetyl-migrated
Product Product
Conversion Yield
B4>-RU@MOF 82% 13% 68%
B4o, Ru 54% 35% 7%
Ve ]2+ (C) C0202H5 COzC2H5
=N N4
N\ R“j A HQQ_C_CH:; _— H2C—C.;—CH3
/ ) p N_N . COCH3 COCH3
\=/ /) A B
. Biz2 Model
Complex1 l *H l *H

{Zn.Ru,(bpdc), 4NH,(CH,),-9DMF},

Reduced
Product

Acetyl-migrated
Product

Scheme 5: Photochemical carbon-skeleton arrangements mediated by B4,-Ru@MOF.

zyme-involving system (Figure 2a). The B,-Ru@MOF is the
best system for the functional simulation of MMCM among our
B, artificial enzymatic systems.

3. Methyl transfer reactions

The Bj,-dependent methionine synthase catalyzes the methyl
transfer reaction as shown in Scheme 6a. In the active center of
the enzyme, cob(I)alamin accepts the methyl group from
methyltetrahydrofolate (CH3-H4-folate) and the resultant
methylcobalamin donates it to homocysteine [65,66]. Construct-
ing the methyl transfer cycle under non-enzymatic conditions is
a challenging issue for chemists. Here, we describe model
studies of the methylation of B, derivatives and methyl
transfer from methylated B, derivatives. Zn?* ions were
considered as the essential cofactors in the enzymatic reactions
reported by many researchers [67-69].

3-1. Methyl transfer to thiols

Chemical reductants such as NaBHy or electrochemical reduc-
tion could provide Co(I) species, so that a-methylated and
B-methylated B, could be formed by the oxidative addition
reaction with a methyl donor. The supernucleophile Co(I)
species readily react with various methyl halides such as methyl
iodide to form a methyl—cobalt complex. Moreover, methanol
could also serve as a methyl donor after the activation of the
OH group by a Lewis acid such as Zn?* [70,71]. Thiols could

also mediate the methylation of 1 with methyl iodide or methyl
tosylate (TsOCHj3) as the methyl donor [72]. Kréutler et al.
found an equilibrium methyl transfer between methylcobal-
amin and the methylated complex of 1 resulting in
cob(Il)alamin and B-methyl heptamethyl cob(III)yrinate.
Such a thermal equilibration takes 16 days at room temperature
[73].

Keese et al. successfully constructed a complete methyl transfer
cycle from methylamines to 1-hexanethiol as an excellent bioin-
spired system. The use of Zn and ZnCl, in refluxing ethanol
was vital for the bioinspired methyl transfer [74]. Recently, we
developed a catalytic methyl transfer system for the first time
through electrolysis under non-enzymatic conditions. The
methyl transfer from TsOCHj to 1-octanethiol was mediated by
controlled-potential electrolysis at —1.0 V vs Ag/AgCl in the
presence of 1 at 50 °C (Scheme 6b) [75]. The Zn plate was used
as a sacrificial anode and the resultant Zn2" ions was vital for
the activation of 1-octanethiol [76]. A similar reaction was suc-
cessfully mediated by the imine/oxime-type cobalt complex 2a
using zinc powder [77].

3-2. Methyl transfer to inorganic arsenic for the
detoxification of arsenic
The wide utilization of inorganic arsenics causes large-scale

environmental pollution, resulting in very chronic diseases [78].
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Scheme 6: (a) Methyl transfer reaction mediated by B12-dependent methionine synthase. (b) Methyl transfer reaction from TsOCH3; to 1-octanthiol

mediated by 1.

However, it was known that the toxicity of organic arsenics is
generally much lower than inorganic ones. For example, the
acute toxicity of arsenobetaine (AB) is about one three-
hundredth that of arsenic trioxide [79]; trimethylarsine oxide
(TMAO) that is an intermediate in the synthesis of AB also has
lower toxicity than inorganic arsenics. Moreover, inorganic
arsenics could be converted to methylated arsenics via human
or animal metabolism involving a methyltransferase and a

reductase [80-82]. Thus, biomimetic transformation from inor-

ganic arsenics to organic arsenics via methyl transfer could be
an eco-friendly methodology for the detoxification of arsenic.
The B,-mimetic methyl transfer reaction for the detoxification
of inorganic arsenics has recently been developed. The highly
toxic Asp;O3 was transformed to AB via TMAO under mild
conditions, as shown in Scheme 7 [83,84]. High efficiency
transformation of As,O3 to TMAO was newly achieved with
methylated complex of 1 as a methyl donor and GSH as a
reductase model.

r
CO,Na OHz “CO,Na o) CHj
| | ICH,CO,~ |
A8203 +
. As As
iAs(lll "\ ™CH ~"\Y ™CH,COO0O~
h GSH Hi¢™ \ 7° GsH HiC 2
CH; CH;
TMAO AB

Scheme 7: Methyl transfer reaction for the detoxification of inorganic arsenics.
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The methyl transfer reaction to As,O3 was first examined at
37 °C in Tris—HCI buffer for 24 h. A methylated complex of 1
was proved to be more efficient than the naturally occurring
methylcobalamin [84]. More than 95% of As,O3 was con-
verted into methylarsonic acid (MMA, 67.8%), dimethylar-
sonic acid (DMA, 27.2%), and TMAO (0.1%) in the reaction of
1, whereas only 20% conversion of As,O3 was observed in the
reaction of methylcobalamin with lower methylated MMA
(17.2%) and DMA (2.8%) as products. When the reaction of the
methylated complex of 1 was performed at 100 °C in Tris—HCl
buffer for 2 h, As;O3 was methylated to TMAO with much as
99% yield [83]. Combined with the nearly quantitative conver-
sion of TMAO to AB in the presence of GSH and iodoacetic
acid in phosphoric acid—citric acid buffer at 37 °C, a safe
and eco-friendly detoxification of inorganic arsenics was de-
veloped via methyl transfer reactions mediated by biomimetic
vitamin By;.

4. Dehalogenation reactions
“Dehalorespiration” is also a model of good catalysts for

chemists because the anaerobic metabolism of microbes couples

Beilstein J. Org. Chem. 2018, 14, 2553-2567.

the dehalogenation of organic halides with energy conservation
[85]. In some electron transport chains, reductive dehaloge-
nases contain By, derivatives as cofactors [86]. The reductive
dehalogenase originating from the anaerobic bacteria,
Sulfurospiririllum multivorans, uses 1,1,2,2-tetrarchloroethene
as a terminal electron acceptor to be reduced to trichloroethene
(Scheme 8a) [87]. In electron transport chains, reductases
reduce the Co(Il) species of the By, cofactor to the Co(I)
species in the active site of reductive dehalogenases [88].
The Co(I) species is a key form for electron transfer to a sub-
strate.

4-1. Choice of alternatives to reductases

Although anaerobic microbes can be applied to remediation
technologies, the dehalogenation abilities of microbes are equal
to the intrinsic abilities of nature in principle. Chemical
methods are considered as efficient techniques to directly
degrade halogenated pollutants. Completely mimicking the
complicated dehalorespiration systems requires tedious efforts.
The concept of bioinspired chemistry would be an effective

methodology to design sustainable systems. To construct good

(a)
reductive
CI\ B /Cl dehalogenase CI\ — /H
Je=c( LTS
. ol cl Cl
Cl
o) H cl Cl Cl
0, O | (J
al ¢ c c
cl electrolysis
Cl Cl -1.4V vs Ag/AgClI bbb e
20% 19% ¢
| X 1
H Cl
N cl |
turnover
DDT number + o '
82 o N\F Cl
DDMU
6%

(E)-TTDB
25%

(2)-TTDB
12%

Scheme 8: (a) Dechlorination of 1,1,2,2-tetrarchloroethene mediated by a reductive dehalogenase. (b) Electrochemical dechlorination of DDT medi-

ated by 1.
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catalytic dehalogenation systems, the key process is the reduc-
tion of Co(Il) species of B, derivatives to the Co(I) species in
sustainable processes.

Electroorganic synthesis is considered an eco-friendly method
for synthetic organic chemistry [89-91]. Clean redox events be-
tween electrodes and substrates can be achieved without any
chemical redox reagents. The use of mediators enables energy
savings with mild applied potentials or small amounts of elec-
tricity. We constructed electrochemical catalytic systems for
dehalogenation of alkyl halides using 1. The electron transfer
from reductases to B, was replaced with that from the cath-
odes to B, derivatives [43].

Light-driven organic transformations attract great attention due
to their relevance to photosynthesis in nature as an ideal sustain-
able system [92-94]. In this context, we constructed light-driven
catalytic systems using 1 by replacing reductases with semicon-
ductor photosensitizers and molecular photosensitizers. For ex-
ample, we reported an ultraviolet-light-driven system using tita-
nium dioxide (TiO;) semiconductor [95-101]. The conductive
band electron of TiO; (E;eq = —0.5 V vs NHE in neutral water)
could reduce 1 to form Co(I) species upon irradiation with ultra-
violet (UV) light. We also reported a visible-light-driven system
with a molecular photosensitizer such as Ru(bpy);2"
[39,40,102,103], cyclometalated iridium(IIl) complexes [104],
and organic red dyes [105-107].

4-2. Dechlorination of DDT and related compounds

We developed an electrochemical catalytic system for the
dechlorination of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane
(DDT) that is one of the most problematic persistent organic
pollutants (POPs) [108]. The controlled-potential electrolysis of
DDT was performed at —1.4 V vs Ag/AgCl in the presence of 1
in DMF/n-BuyNC104. The DDT was converted to 1,1-bis(4-
chlorophenyl)-2,2-dichloroethane (DDD), 1,1-bis(4-chloro-
phenyl)-2,2-dichloroethylene (DDE), 1-chloro-2,2-bis(4-chloro-
phenyl)ethylene (DDMU), and 1,1,4,4-tetrakis(4-chlorophenyl)-
2,3-dichloro-2-butene (TTDB, E/Z) through dechlorination
(Scheme 8b) [109]. A turnover number of 82 based on 1 was
achieved. Mechanistic investigation revealed that the electro-
chemically generated Co(I) species of 1 participated in the
dechlorination. To recycle the catalyst, ionic liquids are promis-
ing solvents due to their excellent electronic conductivity and
nonvolatility. Thus, 1-butyl-3-methylimidazolium tetrafluoro-
borate ([bmim][BF4]) was utilized as the solvent in the dechlo-
rination of DDT [110]. During the extraction process, the prod-
uct and 1 were separated in the organic solvent and ionic liquid
layers, respectively. The ionic liquid layer could be recycled for
further reactions. More interestingly, the catalytic ability of 1

increased nearly four times the reaction using DMF as solvent.
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This was consistent with the Hughes—Ingold prediction of sol-

vent polarity effects on reaction rates [111].

We also developed a visible-light-driven catalytic system
for the dechlorination of DDT using 1 as catalyst and
[Ru(bpy)3]Cl, as photosensitizer [102]. The redox potential of
[Ru(bpy)3]Cl, for Ru(Il)/Ru(I) couple is —1.35 V vs SCE in
CH;3CN. Thus, 1 was reduced to the Co(I) species by the photo-
sensitizer in the presence of triethanolamine (TEOA) as sacrifi-
cial reductant on irradiation with a 500 W tungsten lamp in
ethanol. DDT was successfully converted to DDD, DDE, and
TTDB (E/Z). The recycled use of 1 and [Ru(bpy)3]Cl, was also
achieved using an ionic liquid as the reaction medium [103].
Recently, we have found that cyclometalated iridium(IIl) com-
plexes such as Irdfppy [112] are superior to [Ru(bpy)3]Cl, in
terms of their photosensitization abilities in visible-light-driven
B, catalytic systems (Scheme 9) [104]. This was probably due
to the gradual decomposition of [Ru(bpy);]Cl, under visible
light irradiation. This is consistent with the report by Yoon et al.
in which light irradiation to Ru(bpy)s2" resulted in rapid de-
composition during the photocatalytic reaction [113]. It was
remarkable that a significantly high turnover number based on 1
(10,880) was obtained in the prolonged reaction with Irdfppy.
Quenching experiments with time-resolved photoluminescence
spectroscopy revealed that the oxidative quenching of the
excited state of Irdfppy favorably proceeds over the reductive
quenching mechanism. The combination of 1 and Irdfppy offers
the best choice for the dechlorination of DDT among our light-
driven systems in terms of both catalytic activity and visible-
light harvesting.

In relation to the reactivity of 1 with DDT, interesting reactions
of trichlorinated organic compounds have recently been investi-
gated [100,114]. The B{,-TiO, hybrid catalyst converted
trichlorinated organic compounds into esters and amides by UV
light irradiation in the presence of oxygen, whereas dichlorostil-
benes (£ and Z forms) were formed under nitrogen atmosphere
from benzotrichloride [100]. It was noticeable that an oxygen
switch in dechlorination was successfully demonstrated. A
benzoyl chloride was identified as an intermediate of the esters
and amides. The aerobic electrolysis of trichlorinated organic
compounds was also mediated by 1 to yield esters and amides
[114]. These reactions are important in terms of fine chemical
production from trichlorinated organic compounds through easy

operations (i.e., in air at room temperature).

5. Radical-involved organic synthesis

B, derivatives can mediate various molecular transformations
in addition to the above three-type catalytic reactions. In partic-
ular, alkylated complexes can generate radicals through the

cleavage of the Co(III)-C bonds upon light irradiation, heating,
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Cl Cl
Cl
cl 1, TEOA H c
C T
o Cl cl cl
DDT DDD
_ - 4 1.
7N (TN ?
N\
=N N
photosensitizer T N——\Ru/——N/ \
(0.128 equiv vs 1) N / \ =
N N—=
72\ _ _
_ \ 7/ 2Cl PFs
[Ru(bpy)s]Cl, Irdfppy
conversion 28% 100%
yield 26% 93%
turnover number 78 279

based on 1

Scheme 9: Visible-light-driven dechlorination of DDT using 1 in the presence of photosensitizers.

or electrochemical reduction. In addition, the corrin-ring of the
B, derivatives is tolerant to free radicals, as described above.
Thus, alkylated complexes have been used for radical-mediated
organic synthesis such as halide coupling, alkene coupling, and
addition to double bonds [7,26,27]. In particular, the Co(III)
form of 1 has recently been found to catalyze atom transfer
radical addition of alkyl halides to olefins (phenyl vinyl sulfone
and acrylates) in the presence of NaBH, [115]. In addition, a
new light-driven method for generating acyl radicals from 2-S-
pyridyl thioesters was developed through the use of vitamin By,
[116]. Furthermore, cobalester, an amphiphilic vitamin B, de-

rivative with six ester groups and a nucleotide loop, has recently

been developed to show good catalytic activity for C—C bond
forming reactions [117,118].

The above-mentioned visible-light-driven system composed
of 1, and Irdfppy system was used for radical-mediated
isomerization reactions. Visible-light irradiation of diethyl
2-bromomethyl-2-phenylmalonate produced the phenyl-
migrated product (Scheme 10) [104]. The product distribution
highly depended on the solvents. The yield of phenyl-migrated
products relative to those of simple reduced products signifi-
cantly increased in PhCN, a poor hydrogen radical donor sol-
vent, compared with those in EtOH and CH3CN. Similar phe-

CO,C5H;5 CO,CoH5 Ph CO,CoHs
1, Irdfppy, TEOA
H,C—C—FPh H;C—C—Ph + H,C—CH
hv, 12 hin PhCN
Br CO,C,Hs CO,C5H5 CO,C5H5
reduced Ph-migrated
product product
turnover number . .
based on 1 conversion product ratio
219 95% 23% 50%

Scheme 10: 1,2-Migration of a phenyl group mediated by the visible-light-driven catalytic system composed of 1 and Irdfppy.
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nyl migration was achieved in the UV-light-driven system of
the B1,-TiO, hybrid catalyst [96-98]. The involvement of a
radical species was confirmed by the spin-trapping technique
followed by the ESR measurements.

The B,-TiO; hybrid catalyst also mediated the ring-expansion
reactions of alicyclic ketones with carboxylic ester and
bromomethyl groups (Scheme 11) [96,98]. The products involv-
ing six-, seven-, and eight-membered rings were obtained
through isomerization with 1,2-migration of the ester groups.
The B1,-TiO; hybrid catalyst can be regarded as a good alterna-
tive for conventional radical-involved organic syntheses using
tin compounds.

Br B1,-TiO,
{ 7i hv in EtOH
) COREL hy oyt

ester-migrated product

turnover number

yield based on B4,
n=1 10h 80% 198
n=2 12h 77% 191
n=3 13h 80% 198

Scheme 11: Ring-expansion reactions mediated by the B4,-TiO»
hybrid catalyst with UV-light irradiation.

Recently, we discovered that the By, derivative 1 can mediate
trifluoromethylation and perfluoroalkylation of aromatic and
heteoaromatic compounds by means of electrolysis [119,120].
Introducing trifluoromethyl and perfluoroalkyl groups (Rf) into
organic compounds is an important target in organic synthesis
because the corresponding fluoroalkylated molecules have
received significant interest because of their metabolic stability
and superior electron-withdrawing and lipophilic properties
[121]. The controlled-potential electrolysis of cost-effective
fluoroalkylating reagents with carbon—iodine bonds Rl
(RF = CF3, n-C3F7, }’l-C4F9, n-C8F17, and ”‘C10F21) was carried
out at —0.80 V vs Ag/AgCl in the presence of 1 in methanol/
n-BuyNClOy4 to form Co(III)-Rg complexes with deiodination.
These complexes released Rg radicals on the Co(Ill)-bond
cleavage through visible-light irradiation. The resultant radicals
reacted with aromatic reagents to form the target products
through direct C—H functionalization (Scheme 12).

Conclusion
In this review, we described biomimetic and bioinspired catalyt-
ic reactions with B, enzyme functions, with a classification

into the corresponding three enzyme subfamilies. A variety of
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1 (1.0 mol %)

X H Rl (1 equiv per 1 h) B Re
RT _ methanol RT P
—-0.8 V vs Ag/AgCl, 9 h
hv (>420 nm)

OCHs OCHs
Re Re H3COI>:OCH3
H3CO OCH; HsCO Re
OCHs

Re = CF356%
n-CFy 84%
I’)-C4Fg 75%
n-CgF17 1%
n-C1oF 21 37%

Re = CF320%
n-CsF7 68%
n-C4Fg 75%
n-C 8F17 55%
n-C1oF 21 10%

HSCO:(;(CHS
HaCO Re

Rr 38%
RF = n-C3F7 56% Rr= n-C 3F7 68%

n-C4F9 59% I’)-C4Fg 70%
n-CgF17 47% n-C 8F17 33%

RF = n-C 3F7 70%
I’I-C4F9 69%
n-CgF17 48%

OCH,

OCHg3; CsF7

Re = n-CzF755%
n-C4Fg 49%
n-CgF17 35%

RF = n-C3F7 61%
n-C4Fg 56%
n-CgF17 44%

Scheme 12: Trifluoromethylation and perfluoroalkylation of aromatic
compounds achieved through electrolysis with catalyst 1.

B, enzymes mediate various molecular transformations, in
conjunction with other enzymes. Bound apoenzymes maximize
the potential ability of By, as a molecular catalyst. We concep-
tually broke up natural systems involving B, enzymes into
pieces and artificially assembled them again in a unique
fashion. The resultant biomimetic and bioinspired systems
provide new insights into designing catalytic systems in terms

of green and eco-friendly reactions.
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